
Scalable and Robust Computational Tools for High-End Computing

The DOE Advanced Computational Software Collection (ACTS)

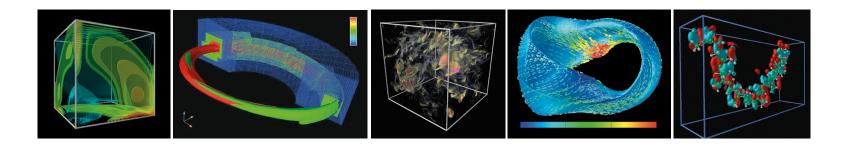
Thirteenth
DOE ACTS Collection Workshop
Berkeley, California, August 14-17, 2012

Tony Drummond

Computational Research Division
Lawrence Berkeley National Laboratory

OUTLINE

- Motivation
- Hardware Trend
- HPC Software Stack
- The DOE ACTS Collection
 - ACTS Functionality
 - Interfaces and Interoperability
- The 12th DOE ACTS Collection Workshop
 - Agenda
- Acknowledgements


Scalable and Robust Computational Libraries and Tools for High-End Computing

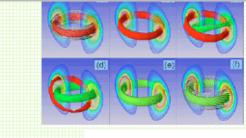
The DOE ACTS Collection

Goal: The Advanced CompuTational Software Collection (ACTS) makes reliable and efficient software tools more widely used, and more effective in solving the nation's engineering and scientific problems.

References:

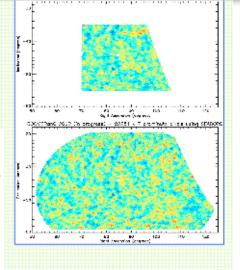
- L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov

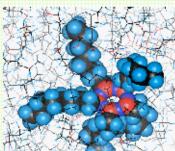
Scalable and Robust Computational Libraries and Tools for High-End Computing



Motivation - HPC Applications

- Accelerator Science
- Astrophysics
- Biology
- Chemistry
- Earth Sciences
- Materials Science
- Nanoscience
- Plasma Science


•


•

CongaNP is a parallel distributed memory code intended for the modelling and analysis of accelerator confiles, which requires the solidation of parallel exact shift-invert agreements. A parallel exact shift-invert agreement found on PAMP ACK and Supert J. has allowed by the solution of a problem, of order 7.5 million with 204 million moments.

Commonalities:

- Major advancements in Science
- Increasing demands for computational power
- Rely on available computational systems, languages, and software tools

Scalable and Robust Computational Libraries and Tools for High-End Computing

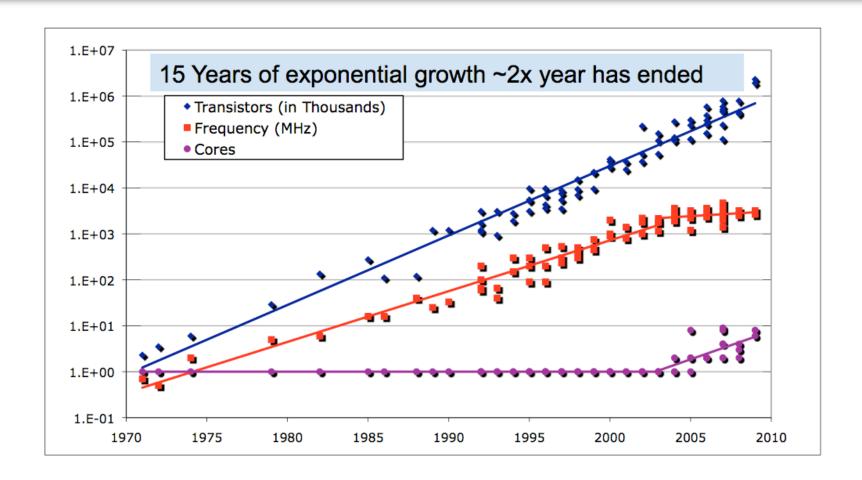
HPC Software Stack

APPLICATIONS

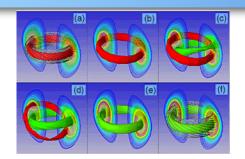
GENERAL PURPOSE TOOLS

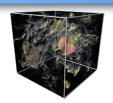
PLATFORM SUPPORT TOOLS AND UTILITIES

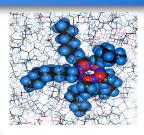
HARDWARE

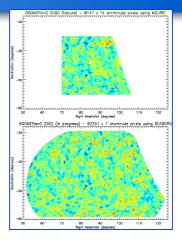

Scalable and Robust Computational Libraries and Tools for High-End Computing

Hardware Trend


Scalable and Robust Computational Libraries and Tools for High-End Computing







HPC Software Stack

Omega3P is a parallel distributedmemory code intended for the modeling and analysis of accelerator cavities, which requires the solution of generalized eigenvalue problems. A parallel exact shift-invert eigensolver based on PARPACK and SuperLU has allowed for the solution of a problem of order 7.5 million with 304 million nonzeros.

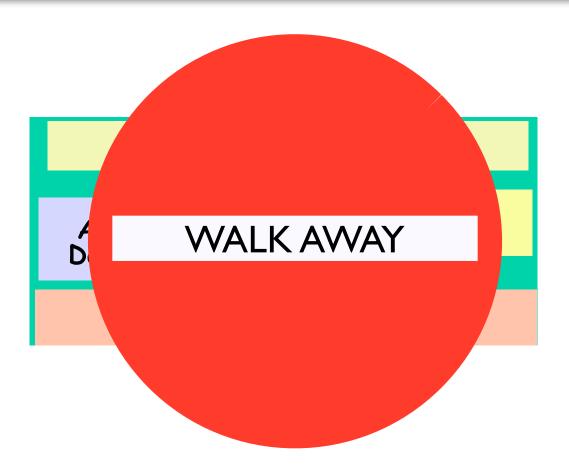
APPLICATIONS

GENERAL PURPOSE TOOLS

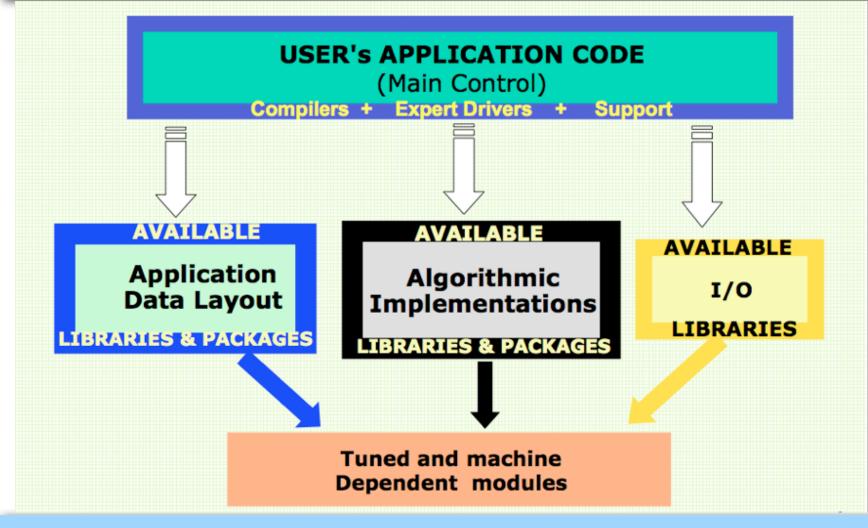
PLATFORM SUPPORT TOOLS AND UTILITIES

HARDWARE

Scalable and Robust Confor High-End Computing

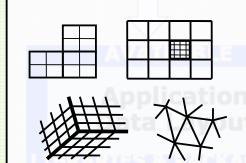

TS Collection Workshop Berkeley, California, August 14-17, 2012

Development of High-End Computing Software


Scalable and Robust Computational Libraries and Tools for High-End Computing

Fast-track The Development of High End Software

Scalable and Robust Computational Libraries and Tools for High-End Computing



Fast-track The Development of High End Software

USER'S APPLICATION CODE

(Main Control)

Compilers + Expert Drivers + Support

Ax = b or AX = B	$A = U\Sigma V^{T}$
Hx = b'	$A = U\Sigma V^H$
$min_x II b - Ax II_2$	$Az = \lambda z$

$$min_x \mid\mid x \mid\mid_2$$
 $min_x \mid\mid b - Ax \mid\mid_2$
 $min_x \mid\mid x \mid\mid_2$
 $Az = \lambda Bz$
 $ABz = \lambda z$
 $ABz = \lambda z$
 $ABz = \lambda z$

Exploit Hardware and Multi-level Concurrency

Dependent modules

Scalable and Robust Computational Libraries and Tools for High-End Computing

HPC Software Stack

HARDWARE

Scalable and Robust Computational Libraries and Tools for High-End Computing

Current State of DOE ACTS Collection

Category	Tool	Functionalities		
Numerical	AztecOO	Scalable linear and non-linear solvers using iterative schemes.		
	Hypre	A family of scalable preconditioners.		
	PETSc	Scalable linear and non-linear solvers and additional support for PD	E related work.	
	SUNDIALS	Solvers for the solution of systems of ordinary differential equations equations, and differential-algebraic equations.	, nonlinear algebraic	
	ScaLAPACK	High performance parallel dense linear algebra.		
	SLEPc	Scalable algorithms for the solution of large sparse eigenvalue prob	olems.	
	SuperLU	Scalable direct solution of large, sparse, nonsymmetric linear systematics	ms of equations.	
	TAO	Large-scale optimization software.		
Cada Davalanment	Global Arrays	Supports the development of parallel programs.		
Code Development	Overture	Supports the development of computational fluid dynamics codes in	n complex geometries.	
Run Time Support	TAU	Portable and scalable performance analyzes and tracing tools for C programs.	, C++, Fortran and Java	
Library Development	ATLAS	Automatic generation of optimized numerical dense algebra for sca	lar processors.	
Category	Tool	Functionalities		
Tools in	ML	Multilevel Preconditioners from Trilinos	Considering	
Consideration	BELOS	Krylov based solvers from Trilinos		
	Zoltan	Parallel Partitional, Data-Management and Load Balancing	4 more	

pOSKI

Parallel Partitional, Data-Management and Load Balancing

Sparse auto-tuning library

Computational Problem	Methodology	Algorithms	Library
What is the computational problem?	Available Methods in ACTS	Available algorithms and their HPC	Specific ACTS Libraries or Tools that provides that functionality
 numerical (solvers, discretization, meshing, etc) 		implementations in ACTS	
Parallel Programming			
 Profiling 			
 Debugging at large scale 			
Programming Model			
Auto-Tuning			

Scalable and Robust Computational Libraries and Tools for High-End Computing

Solution of Linear Systems

Computational Problem

Systems of Linear Equations

$$Ax = b \text{ or}$$

 $Ax = B$

- Solution of systems of linear equations may seem easy, but is at the heart of many computational problems.
- □ The choice of methods and algorithms to solve these problems depends on matrix characteristics;
 - Symmetric vs nonsymmetric
 - Positive definite vs indefinite
 - Dimension
 - SparsitySpecial structures
 - Banded; block bordered diagonal
 - Conditioning

Scalable and Robust Computational Libraries and Tools for High-End Computing

Solution of Linear Systems

Computational Problem

Systems of Linear Equations

$$Ax = b or$$

 $Ax = B$

Primarily, two flavors of methods:

DIRECT

□ ITERATIVE

compute
$$\{x^{(0)}, x^{(1)}, ... x^{(k)}\}$$

- Hybrid
 - preconditioning methods
 - □ multi-level solvers
 - Algebraic and Geometric Multigrid

Scalable and Robust Computational Libraries and Tools for High-End Computing

Solution of Linear Systems

Computational Problem

Systems of Linear Equations

Ax = b or

AX = B

DIRECT ITERATIVE

Finite no. of ops Unkn

Pivoting may be needed to maintain stability

Harder to implement

More communication

Large memory requirement

Complex data structure

More graph problems

• Ordering, symbolic manipulation

Easy to handle multiple RHS

Unknown number of ops.

• Convergence depends on A, machine precision, etc. .

May need preconditioning to improve convergence

Easier to implement

Less communication

Low Memory requirements

Simple data structures

Fewer graph problems

Handling of multiple RHS is more difficult

Scalable and Robust Computational Libraries and Tools for High-End Computing

	Computational Problem	Methodology	Algorithms	Library
	Systems of Linear Equations		LU Factorization	ScaLAPACK(dense) SuperLU (sparse)
	Ax = b or		Cholesky Factorization	ScaLAPACK
	AX = B	Direct Methods	LDL ^T (Tridiagonal matrices)	ScaLAPACK
			QR Factorization	ScaLAPACK
			QR with column pivoting	ScaLAPACK
		LQ factorization	ScaLAPACK	

Scalable and Robust Computational Libraries and Tools for High-End Computing

Comparison Between Direct and Iterative Solvers

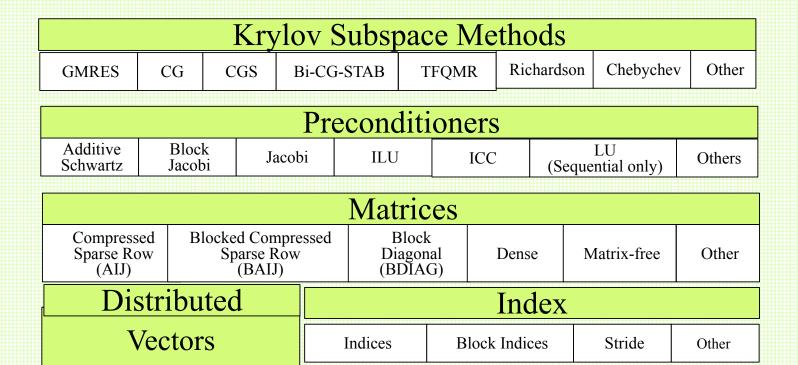
- Direct methods or iterative methods?
 - Depend on dimensions, sparsity, and conditioning
 - Sparse direct solvers have become very efficient.
 - Almost all sparse direct solvers are built on top of dense matrix operations.
 - Direct methods are desirable when
 - Poor conditioning
 - High accuracies are desired
 - Small dimensions ... How small is "small"?
 - > Really depend on memory requirement and time to solution
 - Solving multiple linear systems with the same matrix
 - Only one factorization required

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		LU Factorization	ScaLAPACK(dense) SuperLU (sparse)
Ax = b or		Cholesky Factorization	ScaLAPACK
AX = B	Direct Methods	LDL ^T (Tridiagonal matrices)	ScaLAPACK
		QR Factorization	ScaLAPACK
		QR with column pivoting	ScaLAPACK
		LQ factorization	ScaLAPACK

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		Conjugate	AztecOO (Trilinos)
Equations		Gradient	PETSc
(cont)		GMRES	AztecOO
			PETSc
Ax = b or AX = B			Hypre
		CG Squared	AztecOO
	Iterative Methods		PETSc
		Bi-CG Stab	AztecOO
			PETSc
		Quasi-Minimal Residual (QMR)	AztecOO
		Transpose Free	AztecOO
		QMR	PETSc


Scalable and Robust Computational Libraries and Tools for High-End Computing

PETSc's (Develop @ ANL)

Scalable and Robust Computational Libraries and Tools for High-End Computing

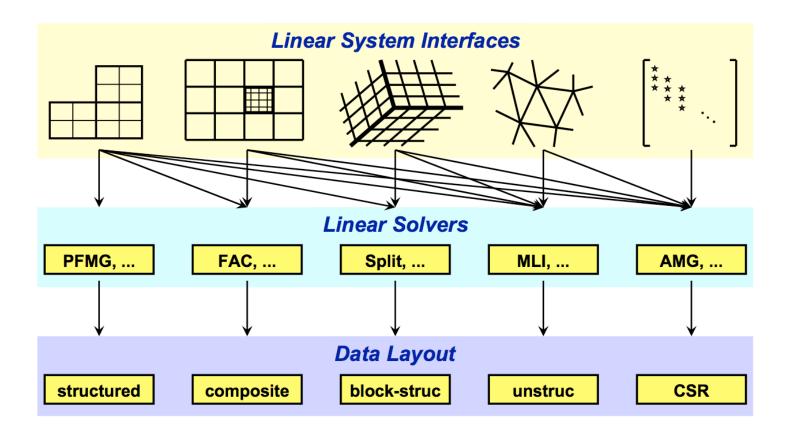
Trilinos Framework (Develop @ SNL)

Full Vertical Solver Coverage

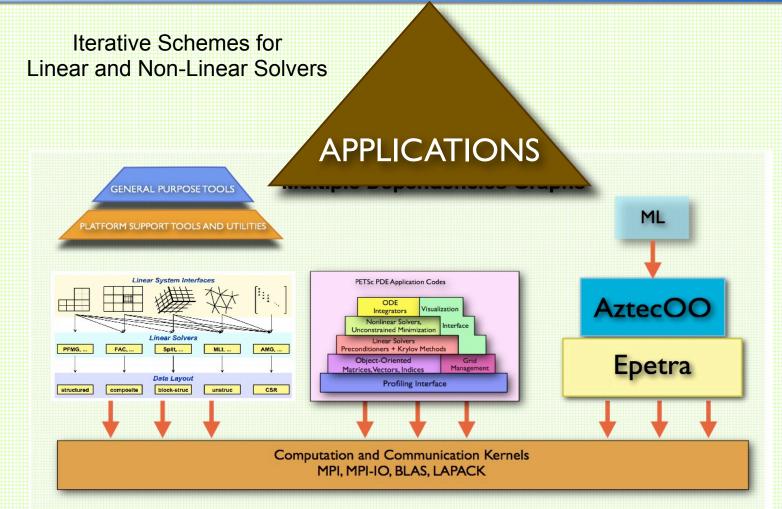
Optimization Unconstrained: Constrained:	Find $u\in\Re^n$ that minimizes $g(u)$ Find $x\in\Re^m$ and $u\in\Re^n$ that minimizes $g(x,u)$ s.t. $f(x,u)=0$	acado)	моосно
Bifurcation Analysis	Given nonlinear operator $F(x,u)\in\Re^{n+m}$ - For $F(x,u)=0$ find space $u\in U\ni\frac{\partial F}{\partial x}$ s	ties ation: S	LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \Re^n, t \in [0, T]$	it i	Rythmos
Nonlinear Problems	Given nonlinear operator $F(x)\in\Re^m o\Re$ Solve $F(x)=0$ $x\in\Re^n$	Sensiatic Differ	NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A,B\in\Re^{m\times n}$ Solve $Ax=b$ for $x\in\Re^n$ Solve $A\nu=\lambda B\nu$ for (all) $\nu\in\Re^n,\ \lambda\in$	(Automa	AztecOO Belos Ifpack, ML, etc Anasazi
Distributed Linear Algebra Matrix/Graph Equations Vector Problems:	Compute $y = Ax$; $A = A(G)$; $A \in \Re^{m \times n}$, $G \in A$ Compute $y = \alpha x + \beta w$; $\alpha = \langle x, y \rangle$; $x, y \in \Re^n$		Epetra Tpetra

Scalable ar for High-End Computing

Workshop


Berkeley, California, August 14-17, 2012

Hypre (Develop @ LLNL)


Scalable and Robust Computational Libraries and Tools for High-End Computing

Overlapping Functionality

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		Conjugate	AztecOO (Trilinos)
Equations		Gradient	PETSc
(cont)		GMRES	AztecOO
			PETSc
Ax = b or AX = B			Hypre
		CG Squared	AztecOO
	Iterative Methods		PETSc
		Bi-CG Stab	AztecOO
			PETSc
		Quasi-Minimal Residual (QMR)	AztecOO
		Transpose Free	AztecOO
		QMR	PETSc

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		SYMMLQ	PETSc
(cont) $Ax = b or$	Iterative Methods (cont)	Precondition CG	AztecOO PETSc Hypre
AX = B		Richardson	PETSc
		Block Jacobi Preconditioner	AztecOO PETSc Hypre
		Point Jocobi Preconditioner	AztecOO
		Least Squares Polynomials	PETSc

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		SOR Preconditioning	PETSc
Equations		Overlapping Additive Schwartz	PETSc
(cont)		Approximate Inverse	Hypre
Ax = b or $Ax = B$	Iterative Methods (cont)	Sparse LU preconditioner	AztecOO PETSc Hypre
		Incomplete LU (ILU) preconditioner	AztecOO
		Least Squares Polynomials	PETSc
	MultiGrid (MG)	MG Preconditioner	PETSc Hypre
	Methods	Algebraic MG	Hypre
		Semi-coarsening	Hypre

Scalable and Robust Computational Libraries and Tools for High-End Computing

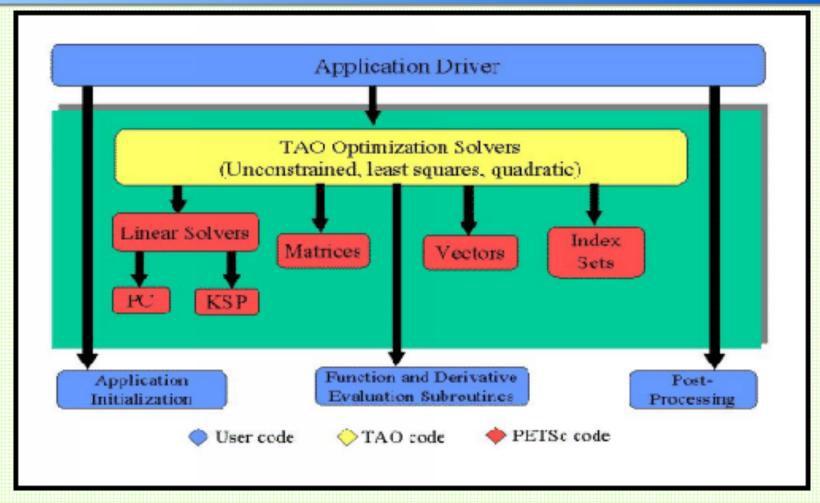
Computational Problem	Methodology	Algorithm	Library
Linear Least Squares Problems	Least Squares	mín _x b- Ax ₂	ScaLAPACK
	Minimum Norm Solution	mín _x X ₂	ScaLAPACK
	Minimum Norm Least Squares	$min_x b - Ax _2$ $min_x x _2$	ScaLAPACK
Standard Eigenvalue Problem	Symmetric Eigenvalue Problem	$Az = \lambda z$ For A=A ^H or A=A ^T	ScaLAPACK (dense) SLEPc (sparse)
Singular Value Problem	Singular Value Decomposition	$A = U\Sigma V^{T}$ $A = U\Sigma V^{H}$	ScaLAPACK (dense) SLEPc (sparse)
Generalized Symmetric Definite Eigenproblem	Eigenproblem	$Az = \lambda Bz$ $ABz = \lambda z$ $BAz = \lambda z$	ScaLAPACK (dense) SLEPc (sparse)

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithm	Library
Non-Linear Equations	Newton Based	Line Search	PETSc
$F(x) = 0, x \in \mathbb{R}^n$ $F(X) \in \mathbb{R}^m \to \mathbb{R}^n$		Trust Regions	PETSc
. (29211 11		Pseudo-Transient Continuation	PETSc
		Matrix Free	PETSc

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithm	Library
Non-Linear Optimization	Newton Based	Newton	TAO
		Finite-Difference Newton	TAO
		Quasi-Newton	TAO
		Non-linear Interior Point	TAO
	CG	Standard Non-linear CG	TAO
		Gradient Projections	TAO
	Semismoothing	Feasible Semismooth	TAO
		Unfeasible semismooth	TAO


Scalable and Robust Computational Libraries and Tools for High-End Computing

TAO Interface Reusing PETSc

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Methodology	Algorithm	Library
Ordinary Differential Equations	Integration	Adam-Moulton (Variable coefficient forms)	CVODE (SUNDIALS) CVODES
	Backward Differential Formula	Direct and Iterative Solvers	CVODE CVODES
Nonlinear Algebraic Equations	Inexact Newton	Line Search	KINSOL (SUNDIALS)
Differential Algebraic Equations	Backward Differential Formula	Direct and Iterative Solvers	IDA (SUNDIALS)

Scalable and Robust Computational Libraries and Tools for High-End Computing

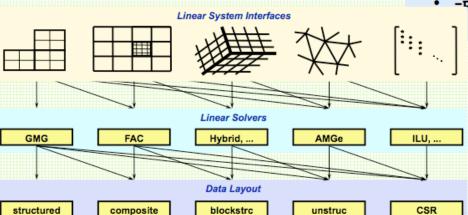
Computational Problem	Methodology	Techniques	Library
Writing Parallel		Shared-Memory	Global Arrays
Programs	Distributed Data Array (SPMD and MIMD)	Grid Generation	OVERTURE
		Structured Meshes	Hypre OVERTURE
			PETSc
		Semi-Structured Meshes	Hypre OVERTURE

Scalable and Robust Computational Libraries and Tools for High-End Computing

Computational Problem	Support	Technique	Library
Profiling	Algorithmic Performance	Automatic instrumentation	PETSc
		User Instrumentation	PETSc
	Execution Performance	Automatic Instrumentation	TAU
		User Instrumentation	TAU
Code Optimization	Library Installation	Linear Algebra Tuning	ATLAS

Scalable and Robust Computational Libraries and Tools for High-End Computing

User Interfaces


```
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
:
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
:
CALL PDGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, $ INFO )
```

Library Calls

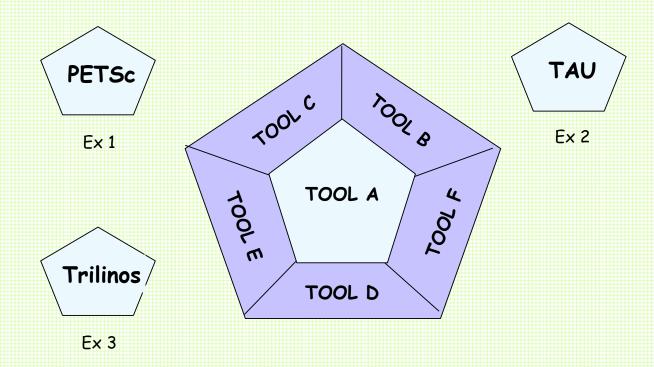
- -ksp_type [cg,gmres,bcgs,tfqmr, ...]
- -pc_type [lu,ilu,jacobi,sor,asm, ...]

More advanced:

- -ksp max it <max iters>
- -ksp gmres restart <restart>
- -pc asm overlap <overlap>

Command lines

Problem Domain


Scalable and Robust Computational Libraries and Tools for High-End Computing

Interoperability

Scalable and Robust Computational Libraries and Tools for High-End Computing

PETSc Interoperability

Libraries/ Frameworks	Functionality
MUMPS	Direct sparse linear solvers
SuperLU	Direct sparse linear solvers
Trilinos	ML Epetra
Hypre	Preconditioners
LAPACK/ ScaLAPACK	Direct dense linear solver

High Performance Software Numerical Libraries

European-US Summer School on HPC Challenge Lake Tahoe, California - August 11, 201

PETSc Interface

MatType	PCType	MatSolverPackage	<pre>Package (-pc_factor_mat_solver_package)</pre>
baij	cholesky	MAT_SOLVER_DSCPACK	dscpack
seqaij	lu	MAT_SOLVER_ESSL	essl
seqaij	lu	MAT_SOLVER_LUSOL	lusol
seqaij	lu	MAT_SOLVER_MATLAB	matlab
aij	lu	MAT_SOLVER_MUMPS	mumps
sbaij	cholesky		
plapack	lu	MAT_SOVLER_PLAPACK	plapack
plapack	cholesky		
aij	lu	MAT_SOLVER_SPOOLES	spooles
sbaij	cholesky		
seqaij	lu	MAT_SOLVER_SUPERLU	superlu
aij	lu	MAT_SOLVER_SUPERLU_DIST	superlu_dist
seqaij	lu	MAT_SOLVER_UMFPACK	umfpack

Table 5: Options for External Solvers

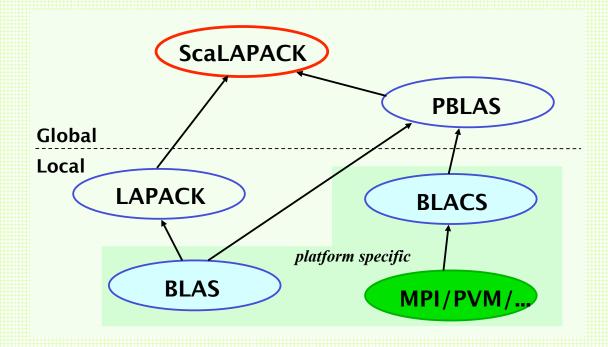
High Performance Software Numerical Libraries

European-US Summer School on HPC Challenges
Lake Tahoe, California - August 11, 201

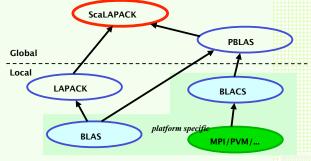
Trilinos interoperability

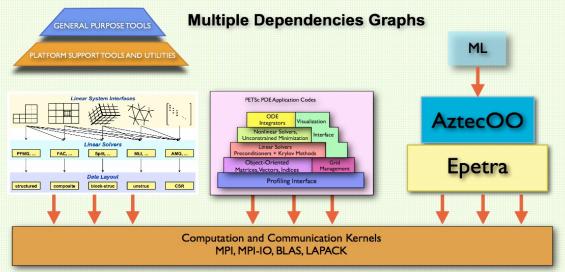
Library	Functionality	
SuperLU	Direct sparse linear solvers	
MUMPS	Direct sparse linear solvers	
PETSc	Epetra_PETScAlJMatrix ML accepts PETSc KSP for smoothers (fine grid only)	
:		

High Performance Software Numerical Libraries


European-US Summer School on HPC Challenge Lake Tahoe, California - August 11, 201

Installing and Building the Libraries


Scalable and Robust Computational Libraries and Tools for High-End Computing



Software Dependency Graph

- Identify key common kernels
- Identify parameters that drive performance
- Profile and test (bottom-up)

Scalable and Robust Computational Libraries and Tools for High-End Computing

Kernel Optimization

Ax = b or AX = B

Hx = b'

 $min_x \parallel b - Ax \parallel_2$

 $min_x || x ||_2$

 $min_x \parallel b - Ax \parallel_2$

 $min_x \parallel x \parallel_2$

 $Az = \lambda z$

 $A = U\Sigma V^T$

 $A = U\Sigma V^H$

 $Az = \lambda Bz$

 $ABz = \lambda z$

 $BAz = \lambda z$

Auto-tuning

Exploit concurrency:

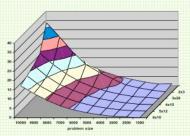
(in and out a node)

- Hybrid programming (MPI+threads)
- NUMA Aware operations

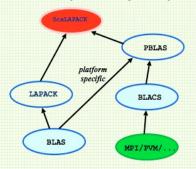
Kernel reusability:

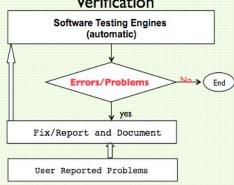
- Bottom-Up automatic optimization
- Identify key parameters in the algorithm
- Run-time parameter control

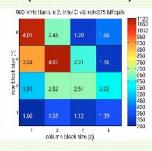
Scalable and Robust Computational Libraries and Tools for High-End Computing



ACTS Software Sustainability Cycle




Performance and Scalability


Software Dependency Graph

Automatic Testing and Verification

Auto-Tuning (OSKI, ATLAS,)

Scalable and Robust Computational Libraries and Tools for High-End Computing

Summary

min[time_to_first_solution] (prototype)

→min[time_to_solution] (production)

- Outlive Complexity
 - · Increasingly sophisticated models
 - Model coupling
 - Interdisciplinary
- Sustained Performance
 - Increasingly complex algorithms
 - Increasingly diverse architectures
 - · Increasingly demanding applications

(Software Evolution)

(Long-term deliverables)

→min[software-development-cost]

max[software_life] and max[resource_utilization]

Scalable and Robust Computational Libraries and Tools for High-End Computing

PROGRAM

Tuesday August 14	Wednesday August 15	Thursday August 16	Friday August 17
Registration from 7:45 AM	Doors open at 8:00 AM	Doors open at 8:00 AM	Doors open at 8:00 AM
Welcome Remarks and Introduction O. Marques T. Drummond 8:30 AM - 9:30 AM	PETSc M. Knepley 8:30 AM - 10:30 AM	Trilinos C. Siefert 8:30 AM - 10:30 AM	SLEPc T. Drummond 8:30 AM - 9:30 AM
ScaLAPACK O. Marques 9:30 AM - 10:30 AM			<i>Zoltan</i> E. Boman 9:30 AM - 10:30 AM
Break for Discussions 10:30 AM - 11:00 AM			

Scalable and Robust Computational Libraries and Tools for High-End Computing

Tuesday August 14	Wednesday August 15	Thursday August 16	Friday August 17
Global Arrays B. Palmer 11:00 AM - 12:00 PM	<i>TAO</i> J. Sarich 11:00 AM - 12:00 PM	SuperLU O. Marques 11:00 AM - 12:00 PM	<i>HYPRE</i> T. Kolev 11:00 AM - 12:30 PM
Working Lunch 12:00 PM - 1:00 PM			Working Lunch
TAU S. Shende 1:00 PM - 2:00 PM	Invited Talk Katherine Yelick 1:00 PM - 2:00 PM	Overture B. Henshaw 1:00 PM - 2:00 PM	12:30 PM - 1:30 PM
Break Sessions 2:00 PM - 2:15 PM			<i>VisIt</i> C. Harrison
Carver@NERSC H. Wasserman 2:05 PM - 2:15 PM			H. Krishnan 1:30 PM - 2:30 PM

Scalable and Robust Computational Libraries and Tools for High-End Computing

TAU Hands-on S. Shende 2:15 PM - 3:30 PM	SUNDIALS C. Woodward 2:15 PM - 3:30 PM	Overture Hands-on B. Henshaw 2:15 PM - 3:30 PM	Break 2:30 PM - 2:40 PM Vislt Hands-on C. Harrison H. Krishnan 2:40 PM - 3:30 PM
ScaLAPACK Hands-on	PETSc Trilinos Hands-on Hands-on	Concluding Remarks	
O. Marques 3:30 PM - 4:30 PM	M. Knepley 3:30 PM - 4:30 PM	C. Siefert 3:30 PM - 4:30 PM	Workshop Adjourns
Global Arrays Hands-on B. Palmer 4:30 PM - 5:30 PM	TAO Hands-on J. Sarich 4:30 PM - 5:30 PM	SuperLU Hands-on O. Marques 4:30 PM - 5:30 PM	
Working Dinner 7:00 PM - 9:30 PM	ParaTools The banquet dinner is spe	onsored in part by ParaTo	ools

Scalable and Robust Computational Libraries and Tools for High-End Computing

Two Accounts:

NERSC Accounts (login to carver.nersc.gov)
 Please Return signed computer policy form

Scalable and Robust Computational Libraries and Tools for High-End Computing

Misc.

- Special meals See Yeen
- List of restaurants

Scalable and Robust Computational Libraries and Tools for High-End Computing

Acknowledgements

- National Energy Research Scientific Computing Center (NERSC) for the use of their I Linux Cluster (magellan) - Harvey Wasserman from NERSC -USG
- Katherine Day and Jan Hennessey for all the great management and support running all the logistics of the workshop
- To all the speakers and teams represented at the 13th DOE ACTS Collection Workshop
- DOE Office of Science sponsors of this workshop
- **U of Oregon and ParaTools** for their support creating the ACTS Collection LiveDVDs and partially sponsoring the dinner tonight

Scalable and Robust Computational Libraries and Tools for High-End Computing

